

Welcome to the Beginner GPS Training for Nutrient Management Planners

Objectives for Today

- Learn how to use the various functions of the GPS unit.
- Apply GPS to various field activities that you use in nutrient management planning
- Learn to map using free computer software.

What is GPS?

- GPS is short for Global Positioning System
- GPS is a SYSTEM made up of
 - Satellites (Space Segment)
 - Ground Control Stations
 - GPS Receivers (or units)

Satellites (Space Segment)

- The space segment is an earth-orbiting constellation of 24 active and five spare GPS satellites circling the earth in six orbital planes.
- The satellites continuously send radio signals towards earth
- These radio signals are picked up by GPS receivers

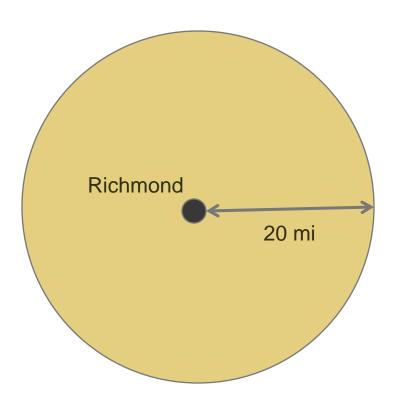
Ground Control Stations (Control Segment)

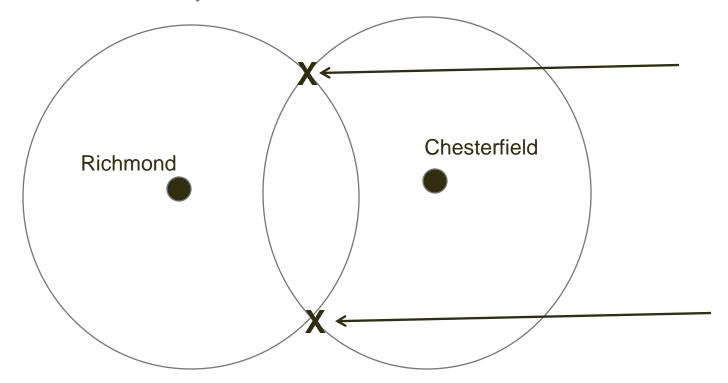
- The Control segment is made up of a Master Control Station (MCS) & four monitor stations.
- Monitor Stations continuously receive GPS satellite transmissions, and relay this information in real time to the Master Control Station in Colorado.

GPS Receivers (User Segment)

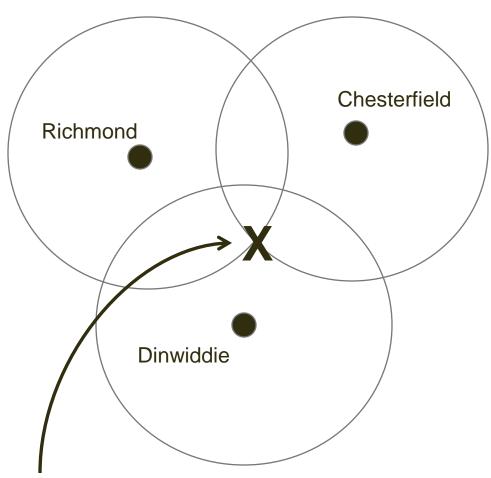
GPS Units are referred to as "receivers"

 They <u>receive</u> information (radio signals) from satellites.

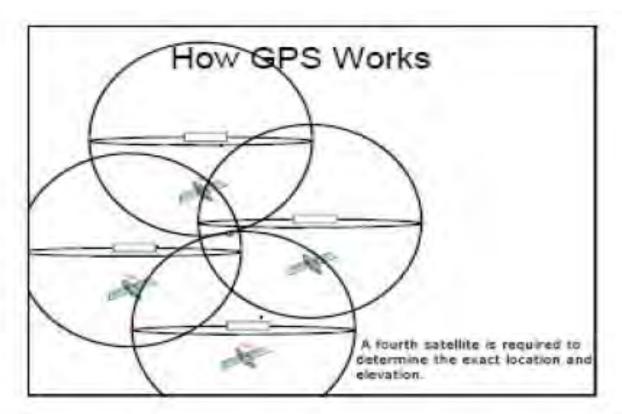



How GPS Works

- GPS uses trilateration (compare to triangulation)
 - You can find any point if given distances from 3 other points
 - Actually need 4 points with GPS


 Satellite #1 tell you that you are 20 miles from Staunton, VA.

 If the GPS receiver obtains #2 satellite, it tell you that you are also 20 miles from Chesterfield, VA



The GPS
receiver
obtains #3
satellite &
tells you that
you are 20
miles from
Dinwiddie, Va.

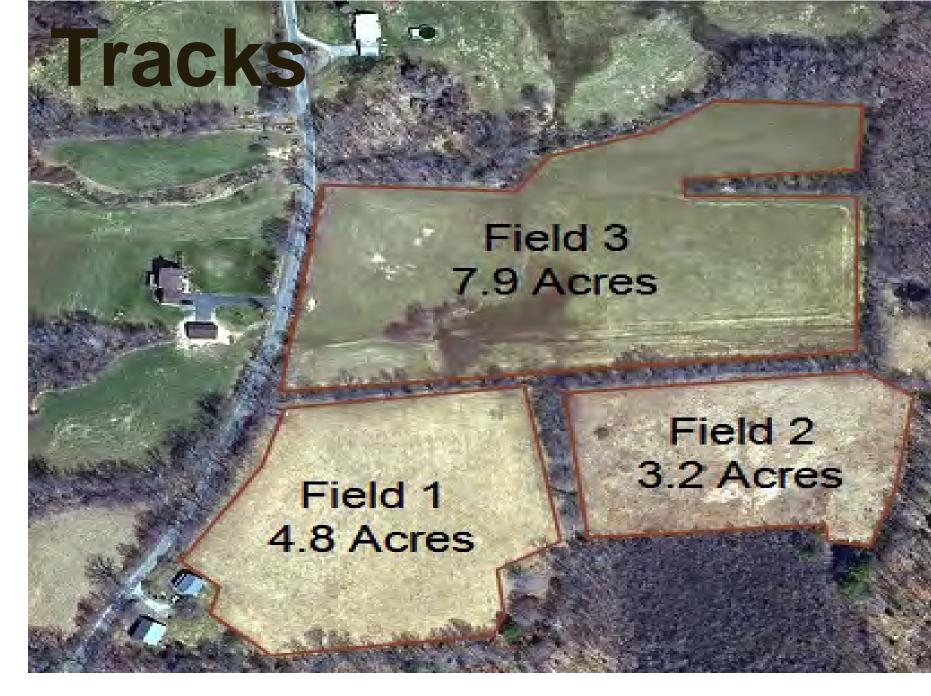
I know I am somewhere within these 3 spheres

 Satellite #4 is required to determine <u>exact</u> <u>location</u> and <u>elevation</u>.

Basic Information Provided by the GPS Receivers

- Position and waypoint coordinates.
- The distance and direction between a receiver's position and a stored waypoint, or between two remote waypoints.
- Accurate time measurement: GPS has become the universal timepiece, allowing any two receivers to be precisely synchronized to each other anywhere in the world.

What can you do with GPS?


- Collect and store waypoints (positions)
 - Field corners
 - Insect infestation areas
 - Soil, leaf, or corn stalk sample
 - Wells
 - Manure storage areas
 - Houses
 - Point source pollutions
- Download the points onto your computer and integrate them with other mapping programs

What can you do with GPS?

- Collect and store the path that you have walked/driven. (Tracks)
- Calculate the distance of a track.
- Calculate area measurements within a track. (measure area of a pasture or field of corn)
- Save and download tracks into your computer.

Tracks

- Tracks are made up of data gathered automatically from your motion while the GPS is turned ON.
- They provide a record of where you've been.
- There may be hundreds or thousands of such points in a track, but they are all anonymous. They don't have names and you can't easily get the location of any particular one.

What can you do with GPS?

- Collect and store Routes
- Routes are similar to tracks, but are created by waypoints
- Routes are handy for measuring square fields and straight lines.
- You can measure the length and acreage of a route.

Routes

 Routes are generally made up of a series of significant points along your path. A route is just a sequence of waypoints.

Routes

Notice the 4 waypoints at each field corner

What can you do with GPS?

The "GOTO" function

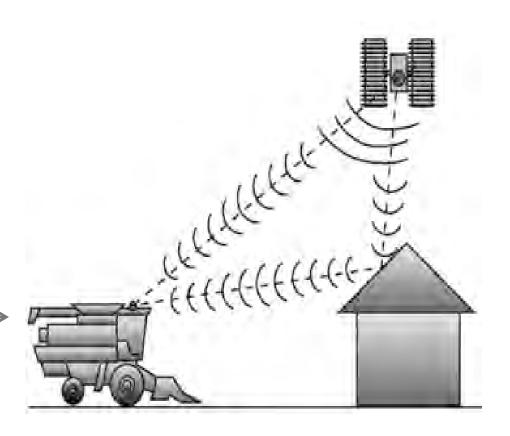
- Using the GOTO function, the GPS will guide you to a predefined Waypoint you choose.
- The GOTO/FIND function is like autopilot.
 The GPS will beep when you are within a certain distance of a selected waypoint.
- Corn Stalk Nitrate testing

Different "Grades" of GPS Receivers

- Recreational Grade ~ \$100-\$800
 - Accurate to w/in 5 meters

- Accurate to w/in 1 meter
- Survey Grade ~\$20,000
 - accurate to within 1cm

Sources of Signal Error

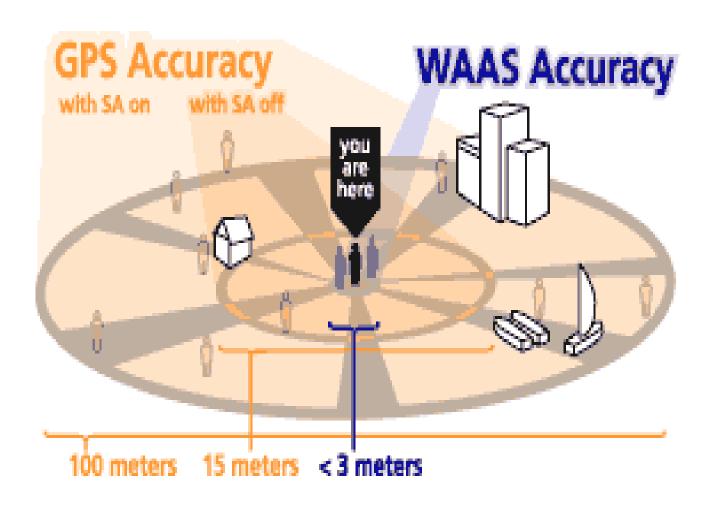

Control Segment blunders - computer glitches or human error.

User mistakes - account for most GPS errors.

human body - Holding a GPS receiver close to the body can block some satellite signals and hinder accurate positioning.

Multipath Interference –

You can lose satellite coverage in areas with dense foliage, deep valleys, gorges, etc.


Line of Site is Essential!

WAAS

(Wide Area Augmentation System)

- Basically, it's a system of satellites and ground stations that provide GPS signal corrections, giving you even better position accuracy.
 - How much better?
 - Try an average of up to five times better.
 - A WAAS-capable receiver can give you a position accuracy of better than three meters 95 percent of the time.
 - The GPS receivers we are using are WAAS Compatible

WAAS (Wide Area Augmentation System)

Map Datums

- WGS84 World Geodetic System 1984
 - Default datum on Garmin. Used by Google Earth.
- NAD27 North American Datum1927
 - Older but used on most USGS topogrpahic maps.
- NAD83 North American Datum 1983
 - Very Similar to WGS84. Used in newer USGS maps.

~ and hundered of others!

Coordinate Systems

- Latitude/Longitude (angular)
 - Degrees minutes –seconds
- UTM/UPS (rectangular, metric)
 - Universal Transverse Mercator
- MGRS (UTM using alphanumeric I.D.)
 - Military Grid Reference System

 Others: Township & Range, State Plane Coordinate, ETC.

Purchase Considerations

- Physical attributes
 - Size
 - Weight
 - Waterproof
 - Battery life!!
 - Screen: color vs b/w
- WAAS enabled: for accuracy under cover
- Memory internal & expandable

Things to remember

- GPS can serve as an accurate data collection tool for GIS applications;
- GPS applications are becoming increasingly prevalent in our society, and support a variety of applications;
- With GPS receivers, you get what you pay for.
- What it is not.....Perfect